FOURTH EDITION ESSENTIAL CELL BIOLOGY

ROBERTS . WALTER

0

-

ALBERTS

FOURTH EDITION ESSENTIAL CELL BIOLOGY Page left intentionally blank

FOURTH EDITION ESSENTIAL CELL BIOLOGY

ALBERTS · BRAY · HOPKIN · JOHNSON · LEWIS · RAFF · ROBERTS · WALTER

Garland Science Vice President: Denise Schanck Senior Editor: Michael Morales Production Editor and Layout: Emma Jeffcock of EJ Publishing Services Illustrator: Nigel Orme Developmental Editor: Monica Toledo Editorial Assistants: Lamia Harik and Alina Yurova Copy Editor: Jo Clayton Book Design: Matthew McClements, Blink Studio, Ltd. Cover Illustration: Jose Ortega

Authors Album Cover: Photography, Christophe Carlinet; Design, Nigel Orme

Indexer: Bill Johncocks

© 2014 by Bruce Alberts, Dennis Bray, Karen Hopkin, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter

© 2010 by Bruce Alberts, Dennis Bray, Karen Hopkin,

Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter

© 2004 by Bruce Alberts, Dennis Bray, Karen Hopkin,

Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter

© 1998 by Bruce Alberts, Dennis Bray, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter

This book contains information obtained from authentic and highly regarded sources. Every effort has been made to trace copyright holders and to obtain their permission for the use of copyright material. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

All rights reserved. No part of this book covered by the copyright hereon may be reproduced or used in any format in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without permission of the publisher.

ISBNs: 978-0-8153-4454-4 (hardcover); 978-0-8153-4455-1 (softcover).

Published by Garland Science, Taylor & Francis Group, LLC, an informa business, 711 Third Avenue, New York, NY 10017, USA, and 3 Park Square, Milton Park, Abingdon, OX14 4RN, UK.

Printed in the United States of America

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Essential Cell Biology Website Artistic and Scientific Direction: Peter Walter Narrated by: Julie Theriot Producer: Michael Morales

About the Authors

Bruce Alberts received his PhD from Harvard University and is the Chancellor's Leadership Chair in Biochemistry and Biophysics for Science and Education, University of California, San Francisco. He was the editor-in-chief of *Science* magazine from 2008–2013, and for twelve years he served as President of the U.S. National Academy of Sciences (1993–2005).

Dennis Bray received his PhD from Massachusetts Institute of Technology and is currently an active emeritus professor at the University of Cambridge.

Karen Hopkin received her PhD in biochemistry from the Albert Einstein College of Medicine and is a science writer in Somerville, Massachusetts. She is a contributor to *Scientific American's* daily podcast, *60-Second Science*, and to E. O. Wilson's digital biology textbook, *Life on Earth*.

Alexander Johnson received his PhD from Harvard University and is Professor of Microbiology and Immunology at the University of California, San Francisco.

Julian Lewis received his DPhil from the University of Oxford and is an Emeritus Scientist at the London Research Institute of Cancer Research UK.

Martin Raff received his MD from McGill University and is at the Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit at University College London.

Keith Roberts received his PhD from the University of Cambridge and was Deputy Director of the John Innes Centre, Norwich. He is currently Emeritus Professor at the University of East Anglia.

Peter Walter received his PhD from The Rockefeller University in New York and is Professor of the Department of Biochemistry and Biophysics at the University of California, San Francisco, and an Investigator of the Howard Hughes Medical Institute.

Library of Congress Cataloging-in-Publication Data

Alberts, Bruce.

Essential cell biology / Bruce Alberts [and seven others]. -- Fourth edition.

pages cm.

ISBN 978-0-8153-4454-4 (hardback)

1. Cytology. 2. Molecular biology. 3. Biochemistry. I. Title. QH581.2.E78 2013 571.6--dc23

2013025976

Visit our website at http://www.garlandscience.com

Preface

In our world there is no form of matter more astonishing than the living cell: tiny, fragile, marvelously intricate, continually made afresh, yet preserving in its DNA a record of information dating back more than three billion years, to a time when our planet had barely cooled from the hot materials of the nascent solar system. Ceaselessly re-engineered and diversified by evolution, extraordinarily versatile and adaptable, the cell retains a complex core of self-replicating chemical machinery that is shared and endlessly repeated by every living organism on the face of the Earth—in every animal, every leaf, every bacterium in a piece of cheese, every yeast in a vat of wine.

Curiosity, if nothing else, should drive us to study cell biology; we need to understand cell biology to understand ourselves. But there are practical reasons, too, why cell biology should be a part of everyone's education. We are made of cells, we feed on cells, and our world is made habitable by cells. The challenge for scientists is to deepen our knowledge of cells and find new ways to apply it. All of us, as citizens, need to know something of the subject to grapple with the modern world, from our own health affairs to the great public issues of environmental change, biomedical technologies, agriculture, and epidemic disease.

Cell biology is a big subject, and it has links with almost every other branch of science. The study of cell biology therefore provides a great scientific education. However, as the science advances, it becomes increasingly easy to become lost in detail, distracted by an overload of information and technical terminology. In this book we therefore focus on providing a digestible, straightforward, and engaging account of only the essential principles. We seek to explain, in a way that can be understood even by a reader approaching biology for the first time, how the living cell works: to show how the molecules of the cell—especially the protein, DNA, and RNA molecules—cooperate to create this remarkable system that feeds, responds to stimuli, moves, grows, divides, and duplicates itself.

The need for a clear account of the essentials of cell biology became apparent to us while we were writing *Molecular Biology of the Cell (MBoC)*, now in its fifth edition. *MBoC* is a large book aimed at advanced undergraduates and graduate students specializing in the life sciences or medicine. Many students and educated lay people who require an introductory account of cell biology would find *MBoC* too detailed for their needs. *Essential Cell Biology (ECB)*, in contrast, is designed to provide the fundamentals of cell biology that are required by anyone to understand both the biomedical and the broader biological issues that affect our lives.

This fourth edition has been extensively revised. We have brought every part of the book up to date, with new material on regulatory RNAs, induced pluripotent stem cells, cell suicide and reprogramming, the human genome, and even Neanderthal DNA. In response to student feedback, we have improved our discussions of photosynthesis and DNA repair. We have added many new figures and have updated our coverage of many exciting new experimental techniques—including RNAi, optogenetics, the applications of new DNA sequencing technologies, and the use of mutant organisms to probe the defects underlying human disease. At the same time, our "How We Know" sections continue to present experimental data and design, illustrating with specific examples how biologists tackle important questions and how their experimental results shape future ideas.

As before, the diagrams in *ECB* emphasize central concepts and are stripped of unnecessary details. The key terms introduced in each chapter are highlighted when they first appear and are collected together at the end of the book in a large, illustrated glossary.

A central feature of the book is the many questions that are presented in the text margins and at the end of each chapter. These are designed to provoke students to think carefully about what they have read, encouraging them to pause and test their understanding. Many questions challenge the student to place the newly acquired information in a broader biological context, and some have more than one valid answer. Others invite speculation. Answers to all the questions are given at the end of the book; in many cases these provide a commentary or an alternative perspective on material presented in the main text.

For those who want to develop their active grasp of cell biology further, we recommend *Molecular Biology of the Cell, Fifth Edition: A Problems Approach*, by John Wilson and Tim Hunt. Though written as a companion to *MBoC*, this book contains questions at all levels of difficulty and contains a goldmine of thought-provoking problems for teachers and students. We have drawn upon it for some of the questions in *ECB*, and we are very grateful to its authors.

The explosion of new imaging and computer technologies continues to provide fresh and spectacular views of the inner workings of living cells. We have captured some of this excitement in the new *Essential Cell Biology* website, located at *www.garlandscience.com/ECB4-students*. This site, which is freely available to anyone in the world with an interest in cell biology, contains over 150 video clips, animations, molecular structures, and high-resolution micrographs—all designed to complement the material in individual book chapters. One cannot watch cells crawling, dividing, segregating their chromosomes, or rearranging their surface without a sense of wonder at the molecular mechanisms that underlie these processes. For a vivid sense of the marvel that science reveals, it is hard to match the narrated movie of DNA replication. These resources have been carefully designed to make the learning of cell biology both easier and more rewarding.

Those who seek references for further reading will find them on the *ECB* student and instructor websites. But for the very latest reviews in the current literature, we suggest the use of web-based search engines, such as PubMed (*www.ncbi.nlm.nih.gov*) or Google Scholar (*scholar.google.com*).

As with *MBoC*, each chapter of *ECB* is the product of a communal effort, with individual drafts circulating from one author to another. In addition, many people have helped us, and these are credited in the Acknowledgments that follow. Despite our best efforts, it is inevitable that there will be errors in the book. We encourage readers who find them to let us know at science@garland.com, so that we can correct these errors in the next printing.

Acknowledgments

The authors acknowledge the many contributions of professors and students from around the world in the creation of this fourth edition. In particular, we are grateful to the students who participated in our focus groups; they provided invaluable feedback about their experiences using the book and our multimedia, and many of their suggestions were implemented in this edition.

We would also like to thank the professors who helped organize the student focus groups at their schools: Nancy W. Kleckner at Bates College, Kate Wright and Dina Newman at Rochester Institute of Technology, David L. Gard at University of Utah, and Chris Brandl and Derek McLachlin at University of Western Ontario. We greatly appreciate their hospitality and the opportunity to learn from their students.

We also received detailed reviews from many instructors who used the third edition, and we would like to thank them for their contributions: Devavani Chatterjea, Macalester College; Frank Hauser, University of Copenhagen; Alan Jones, University of North Carolina at Chapel Hill; Eugene Mesco, Savannah State University; M. Scott Shell, University of California Santa Barbara; Grith Lykke Sørensen, University of Southern Denmark; Marta Bechtel, James Madison University; David Bourgaize, Whittier College; John Stephen Horton, Union College; Sieirn Lim, Nanyang Technological University; Satoru Kenneth Nishimoto, University of Tennessee Health Science Center; Maureen Peters, Oberlin College; Johanna Rees, University of Cambridge; Gregg Whitworth, Grinnell College; Karl Fath, Queens College, City University of New York; Barbara Frank, Idaho State University; Sarah Lundin-Schiller, Austin Peay State University; Marianna Patrauchan, Oklahoma State University; Ellen Rosenberg, University of British Columbia; Leslie Kate Wright, Rochester Institute of Technology; Steven H. Denison, Eckerd College; David Featherstone, University of Illinois at Chicago; Andor Kiss, Miami University; Julie Lively, Sewanee, The University of the South; Matthew Rainbow, Antelope Valley College; Juliet Spencer, University of San Francisco; Christoph Winkler, National University of Singapore; Richard Bird, Auburn University; David Burgess, Boston

College; Elisabeth Cox, State University of New York, College at Geneseo; David L. Gard, University of Utah; Beatrice Holton, University of Wisconsin Oshkosh; Glenn H. Kageyama, California State Polytechnic University, Pomona; Jane R. Dunlevy, University of North Dakota; Matthias Falk, Lehigh University. We also want to thank James Hadfield of Cancer Research UK Cambridge Institute for his review of the methods chapter.

Special thanks go to David Morgan, a coauthor of *MBoC*, for his help on the signaling and cell division chapters.

We are very grateful, too, to the readers who alerted us to errors they had found in the previous edition.

Many staff at Garland Science contributed to the creation of this book and made our work on it a pleasure. First of all, we owe a special debt to Michael Morales, our editor, who coordinated the whole enterprise. He organized the initial reviewing and the focus groups, worked closely with the authors on their chapters, urged us on when we fell behind, and played a major part in the design, assembly, and production of *Essential* Cell Biology student website. Monica Toledo managed the flow of chapters through the book development and production process, and oversaw the writing of the accompanying question bank. Lamia Harik gave editorial assistance. Nigel Orme took original drawings created by author Keith Roberts and redrew them on a computer, or occasionally by hand, with great skill and flair. To Matt McClements goes the credit for the graphic design of the book and the creation of the chapter-opener sculptures. As in previous editions, Emma Jeffcock did a brilliant job in laying out the whole book and meticulously incorporating our endless corrections. Adam Sendroff and Lucy Brodie gathered user feedback and launched the book into the wide world. Denise Schanck, the Vice President of Garland Science, attended all of our writing retreats and orchestrated everything with great taste and diplomacy. We give our thanks to everyone in this long list.

Last but not least, we are grateful, yet again, to our colleagues and our families for their unflagging tolerance and support. Page left intentionally blank

Resources for Instructors and Students

The teaching and learning resources for instructors and students are available online. The instructor's resources are password protected and available only to qualified instructors. The student resources are available to everyone. We hope these resources will enhance student learning, and make it easier for instructors to prepare dynamic lectures and activities for the classroom.

INSTRUCTOR RESOURCES

Instructor Resources are available on the Garland Science Instructor's Resource Site, located at *www. garlandscience.com/instructors.* The website provides access not only to the teaching resources for this book but also to all other Garland Science textbooks. Qualified instructors can obtain access to the site from their sales representative or by emailing science@garland.com.

Art of Essential Cell Biology, Fourth Edition

The images from the book are available in two convenient formats: PowerPoint® and JPEG. They have been optimized for display on a computer. Figures are searchable by figure number, figure name, or by keywords used in the figure legend from the book.

Figure-Integrated Lecture Outlines

The section headings, concept headings, and figures from the text have been integrated into PowerPoint presentations. These will be useful for instructors who would like a head start creating lectures for their course. Like all of our PowerPoint presentations, the lecture outlines can be customized. For example, the content of these presentations can be combined with videos and questions from the book or "Question Bank," in order to create unique lectures that facilitate interactive learning.

Animations and Videos

The 130+ animations and videos that are available to students are also available on the Instructor's Resource site in two formats. The WMV-formatted movies are created for instructors who wish to use the movies in PowerPoint presentations on Windows® computers; the QuickTime-formatted movies are for use in PowerPoint for Apple computers or Keynote® presentations. The movies can easily be downloaded to your computer using the "download" button on the movie preview page.

Question Bank

Written by Linda Huang, University of Massachusetts, Boston, and Cheryl D. Vaughan, Harvard University Division of Continuing Education, the revised and expanded question bank includes a variety of question formats: multiple choice, fill-in-the-blank, true-false, matching, essay, and challenging "thought" questions. There are approximately 60-70 questions per chapter, and a large number of the multiple-choice questions will be suitable for use with personal response systems (that is, clickers). The Question Bank was created with the philosophy that a good exam should do much more than simply test students' ability to memorize information; it should require them to reflect upon and integrate information as a part of a sound understanding. It provides a comprehensive sampling of questions that can be used either directly or as inspiration for instructors to write their own test questions.

References

Adapted from the detailed references of *Molecular Biology of the Cell*, and organized by the table of contents for *Essential Cell Biology*, the "References" provide a rich compendium of journal and review articles for reference and reading assignments. The "References" PDF document is available on both the instructor and student websites.

Medical Topics Guide

This document highlights medically relevant topics covered throughout the book, and will be particularly useful for instructors with a large number of premedical, health science, or nursing students.

Media Guide

This document overviews the multimedia available for students and instructors and contains the text of the voice-over narration for all of the movies.

Blackboard® and LMS Integration

The movies, book images, and student assessments that accompany the book can be integrated into Blackboard or other learning management systems. These resources are bundled into a "Common Cartridge" that facilitates bulk uploading of textbook resources into Blackboard and other learning management systems. The LMS Common Cartridge can be obtained on a DVD from your sales representative or by emailing science@garland.com.

STUDENT RESOURCES

The resources for students are available on the *Essential Cell Biology* Student Website, located at *www.garland science.com/ECB4-students*.

Animations and Videos

There are over 130 movies, covering a wide range of cell biology topics, which review key concepts in the book and illuminate the cellular microcosm.

Student Self-Assessments

The website contains a variety of self-assessment tools to help students.

- Each chapter has a multiple-choice quiz to test basic reading comprehension.
- There are also a number of media assessments that require students to respond to specific questions about movies on the website or figures in the book.
- Additional concept questions complement the questions available in the book.
- "Challenge" questions are included that provide a more experimental perspective or require a greater depth of conceptual understanding.

Cell Explorer

This application teaches cell morphology through interactive micrographs that highlight important cellular structures.

Flashcards

Each chapter contains a set of flashcards, built into the website, that allow students to review key terms from the text.

Glossary

The complete glossary from the book is available on the website and can be searched or browsed.

References

A set of references is available for each chapter for further reading and exploration.

Contents and Special Features

Chapter 1 Cells: The Fundamental Units of Life	1
Panel 1–1 Microscopy	10–11
Panel 1–2 Cell Architecture	25
How We Know: Life's Common Mechanisms	30–31
Chapter 2 Chemical Components of Cells	39
How We Know: What Are Macromolecules?	60–61
Panel 2–1 Chemical Bonds and Groups	66–67
Panel 2–2 The Chemical Properties of Water	68–69
Panel 2–3 An Outline of Some of the Types of Sugars	70–71
Panel 2–4 Fatty Acids and Other Lipids	72–73
Panel 2–5 The 20 Amino Acids Found in Proteins	74–75
Panel 2–6 A Survey of the Nucleotides	76–77
Panel 2–7 The Principal Types of Weak Noncovalent Bonds	78–79
Chapter 3 Energy, Catalysis, and Biosynthesis	83
Panel 3–1 Free Energy and Biological Reactions	96–97
How We Know: Measuring Enzyme Performance	104–106
Chapter 4 Protein Structure and Function	121
Panel 4–1 A Few Examples of Some General Protein Functions	122
Panel 4–2 Making and Using Antibodies	146–147
How We Know: Probing Protein Structure	162–163
Panel 4–3 Cell Breakage and Initial Fractionation of Cell Extracts	164–165
Panel 4–4 Protein Separation by Chromatography	166
Panel 4–5 Protein Separation by Electrophoresis	167
Chapter 5 DNA and Chromosomes	171
How We Know: Genes Are Made of DNA	174–176
Chapter 6 DNA Replication, Repair, and Recombination	197
How We Know: The Nature of Replication	200–202
Chapter 7 From DNA to Protein: How Cells Read the Genome	223
How We Know: Cracking the Genetic Code	240–241
Chapter 8 Control of Gene Expression	261
How We Know: Gene Regulation—the Story of Eve	274–275
Chapter 9 How Genes and Genomes Evolve	289
How We Know: Counting Genes	316–317

Chapter 10 Modern Recombinant DNA Technology	325
How We Know: Sequencing The Human Genome	344–345
Chapter 11 Membrane Structure	359
How We Know: Measuring Membrane Flow	378–379
Chapter 12 Transport Across Cell Membranes	383
How We Know: Squid Reveal Secrets of Membrane Excitability	406–407
Chapter 13 How Cells Obtain Energy From Food	419
Panel 13–1 Details of the 10 Steps of Glycolysis	428–429
Panel 13–2 The Complete Citric Acid Cycle	434–435
How We Know: Unraveling the Citric Acid Cycle	436–437
Chapter 14 Energy Generation in Mitochondria and Chloroplasts	447
How We Know: How Chemiosmotic Coupling Drives ATP Synthesis	462–463
Panel 14–1 Redox Potentials	466
Chapter 15 Intracellular Compartments and Protein Transport	487
How We Know: Tracking Protein and Vesicle Transport	512–513
Chapter 16 Cell Signaling	525
How We Know: Untangling Cell Signaling Pathways	556–557
Chapter 17 Cytoskeleton	565
How We Know: Pursuing Microtubule-Associated Motor Proteins	580–581
Chapter 18 The Cell-Division Cycle	603
How We Know: Discovery of Cyclins and Cdks	609–610
Panel 18–1 The Principal Stages of M Phase in an Animal Cell	622–623
Chapter 19 Sexual Reproduction and the Power of Genetics	645
Panel 19–1 Some Essentials of Classical Genetics	669
How We Know: Using SNPs To Get a Handle on Human Disease	676–677
Chapter 20 Cell Communities: Tissues, Stem Cells, and Cancer	683
How We Know: Making Sense of the Genes That Are Critical for Cancer	722–723

Detailed Contents

Chapter 1 Cells: The Fundamental Units of Life 1 UNITY AND DIVERSITY OF CELLS 2 Cells Vary Enormously in Appearance and Function 2 Living Cells All Have a Similar Basic Chemistry 3 All Present-Day Cells Have Apparently Evolved from the Same Ancestral Cell 4 Genes Provide the Instructions for Cell Form, Function, and Complex Behavior 5 **CELLS UNDER THE MICROSCOPE** 5 The Invention of the Light Microscope Led to the Discovery of Cells 6 Light Microscopes Allow Examination of Cells and Some of Their Components 7 The Fine Structure of a Cell Is Revealed by 8 Electron Microscopy 12 THE PROKARYOTIC CELL Prokaryotes Are the Most Diverse and Numerous Cells on Earth 13 The World of Prokaryotes Is Divided into Two Domains: Bacteria and Archaea 15 THE EUKARYOTIC CELL 15 The Nucleus Is the Information Store of the Cell 15 Mitochondria Generate Usable Energy from Food to Power the Cell 16 Chloroplasts Capture Energy from Sunlight 18 Internal Membranes Create Intracellular **Compartments with Different Functions** 19 The Cytosol Is a Concentrated Aqueous Gel of Large and Small Molecules 21 The Cytoskeleton Is Responsible for Directed Cell Movements 21 22 The Cytoplasm Is Far from Static Eukaryotic Cells May Have Originated as 23 Predators MODEL ORGANISMS 26 Molecular Biologists Have Focused on E. coli 27 27 Brewer's Yeast Is a Simple Eukaryotic Cell Arabidopsis Has Been Chosen as a Model Plant 28 Model Animals Include Flies, Fish, Worms, and Mice 28 **Biologists Also Directly Study Human Beings** and Their Cells 32

Comparing Genome Sequences Reveals Life's Common Heritage	33
Genomes Contain More Than Just Genes	35
Essential Concepts	35
Questions	37
	57
Chapter 2	
Chemical Components of Cells	39
CHEMICAL BONDS	40
Cells Are Made of Relatively Few Types of Atoms	40
The Outermost Electrons Determine How Atoms Interact	41
Covalent Bonds Form by the Sharing of Electrons	44
There Are Different Types of Covalent Bonds	45
Covalent Bonds Vary in Strength	46
Ionic Bonds Form by the Gain and Loss of	
	46
Noncovalent Bonds Help Bring Molecules Together in Cells	47
Hydrogen Bonds Are Important Noncovalent Bonds For Many Biological Molecules	48
Some Polar Molecules Form Acids and Bases in Water	49
SMALL MOLECULES IN CELLS	50
A Cell Is Formed from Carbon Compounds	50
Cells Contain Four Major Families of Small	F 4
Organic Molecules	51
Sugars Are Both Energy Sources and Subunits of Polysaccharides	52
Fatty Acid Chains Are Components of Cell	
Membranes	53
Amino Acids Are the Subunits of Proteins	55
Nucleotides Are the Subunits of DNA and RNA	56
MACROMOLECULES IN CELLS	58
Each Macromolecule Contains a Specific Sequence of Subunits	59
Noncovalent Bonds Specify the Precise Shape of a Macromolecule	62
Noncovalent Bonds Allow a Macromolecule	
to Bind Other Selected Molecules	63
Essential Concepts	64
Questions	80

Chapter 3	
Energy, Catalysis, and Biosynthesis	83
THE USE OF ENERGY BY CELLS	84
Biological Order Is Made Possible by the Release of Heat Energy from Cells	84
Cells Can Convert Energy from One Form to Another	86
Photosynthetic Organisms Use Sunlight to Synthesize Organic Molecules	87
Cells Obtain Energy by the Oxidation of Organic Molecules	88
Oxidation and Reduction Involve Electron Transfers	89
FREE ENERGY AND CATALYSIS	90
Chemical Reactions Proceed in the Direction that Causes a Loss of Free Energy	91
Enzymes Reduce the Energy Needed to Initiate	71
Spontaneous Reactions	91
The Free-Energy Change for a Reaction Determines Whether It Can Occur	93
ΔG Changes As a Reaction Proceeds Toward Equilibrium	94
The Standard Free-Energy Change, ΔG° , Makes it Possible to Compare the Energetics of Different Reactions	94
The Equilibrium Constant Is Directly Proportional	
to ΔG°	95
In Complex Reactions, the Equilibrium Constant Includes the Concentrations of All Reactants and Products	98
The Equilibrium Constant Indicates the Strength of Molecular Interactions	98
For Sequential Reactions, the Changes in Free Energy Are Additive	99
Thermal Motion Allows Enzymes to Find Their Substrates	100
V_{\max} and K_{M} Measure Enzyme Performance	102
ACTIVATED CARRIERS AND BIOSYNTHESIS	103
The Formation of an Activated Carrier Is Coupled to an Energetically Favorable	
Reaction	103
ATP Is the Most Widely Used Activated Carrier Energy Stored in ATP Is Often Harnessed to	107
Join Two Molecules Together	109
NADH and NADPH Are Both Activated Carriers of Electrons	109
NADPH and NADH Have Different Roles in Cells	110
Cells Make Use of Many Other Activated	111
Carriers The Synthesis of Biological Polymers Requires	111
an Energy Input	113
Essential Concepts	116
Questions	117

Chapter 4 Protein Structure and Function	121
THE SHAPE AND STRUCTURE OF PROTEINS The Shape of a Protein Is Specified by Its Amino	123
Acid Sequence	123
Proteins Fold into a Conformation of Lowest Energy	126
Proteins Come in a Wide Variety of Complicated Shapes	127
The α Helix and the β Sheet Are Common Folding Patterns	130
Helices Form Readily in Biological Structures	130
β Sheets Form Rigid Structures at the Core of Many Proteins	132
Proteins Have Several Levels of Organization	132
Many Proteins Also Contain Unstructured Regions	134
Few of the Many Possible Polypeptide Chains	
Will Be Useful	135
Proteins Can Be Classified into Families	136
Large Protein Molecules Often Contain More Than One Polypeptide Chain	137
Proteins Can Assemble into Filaments, Sheets, or Spheres	138
Some Types of Proteins Have Elongated Fibrous Shapes	139
Extracellular Proteins Are Often Stabilized by Covalent Cross-Linkages	140
HOW PROTEINS WORK	141
All Proteins Bind to Other Molecules	141
There Are Billions of Different Antibodies, Each with a Different Binding Site	143
Enzymes Are Powerful and Highly Specific Catalysts	144
Lysozyme Illustrates How an Enzyme Works	145
Many Drugs Inhibit Enzymes	149
Tightly Bound Small Molecules Add Extra Functions to Proteins	149
HOW PROTEINS ARE CONTROLLED	150
The Catalytic Activities of Enzymes Are Often Regulated by Other Molecules	151
Allosteric Enzymes Have Two or More Binding Sites That Influence One Another	151
Phosphorylation Can Control Protein Activity by Causing a Conformational Change	152
Covalent Modifications Also Control the Location and Interaction of Proteins	154
GTP-Binding Proteins Are Also Regulated by the Cyclic Gain and Loss of a Phosphate Group	155
ATP Hydrolysis Allows Motor Proteins to Produce Directed Movements in Cells	155
Proteins Often Form Large Complexes That Function as Protein Machines	156

Detailed Contents xv

HOW PROTEINS ARE STUDIED	157
Proteins Can be Purified from Cells or Tissues	157
Determining a Protein's Structure Begins with Determining Its Amino Acid Sequence	158
Genetic Engineering Techniques Permit the Large-Scale Production, Design, and Analysis of Almost Any Protein	160
The Relatedness of Proteins Aids the Prediction of Protein Structure and Function	161
Essential Concepts	168
Questions	169
Chapter 5 DNA and Chromosomes	171
THE STRUCTURE OF DNA	172
A DNA Molecule Consists of Two Complementar Chains of Nucleotides	y 173
The Structure of DNA Provides a Mechanism for Heredity	178
THE STRUCTURE OF EUKARYOTIC CHROMOSOMES	179
Eukaryotic DNA Is Packaged into Multiple Chromosomes	179
Chromosomes Contain Long Strings of Genes	180
Specialized DNA Sequences Are Required for DNA Replication and Chromosome	400
Segregation Interphase Chromosomes Are Not Randomly	182
Distributed Within the Nucleus	183
The DNA in Chromosomes Is Always Highly Condensed	184
Nucleosomes Are the Basic Units of Eukaryotic Chromosome Structure	185
Chromosome Packing Occurs on Multiple Levels	187
THE REGULATION OF CHROMOSOME STRUCTURE	188
Changes in Nucleosome Structure Allow Access to DNA	188
Interphase Chromosomes Contain Both Condensed and More Extended Forms	
of Chromatin	190
Essential Concepts	192
Questions	193
Chapter 6 DNA Replication, Repair, and Recombination	197
DNA REPLICATION	198
Base-Pairing Enables DNA Replication	198
DNA Synthesis Begins at Replication Origins	199
Two Replication Forks Form at Each Replication Origin	199
DNA Polymerase Synthesizes DNA Using a	
Parental Strand as Template	203
The Replication Fork Is Asymmetrical	204
DNA Polymerase Is Self-correcting	205

Short Lengths of RNA Act as Primers for	
DNA Synthesis	206
Proteins at a Replication Fork Cooperate to Form a Replication Machine	207
Telomerase Replicates the Ends of Eukaryotic Chromosomes	209
DNA REPAIR	211
DNA Damage Occurs Continually in Cells	212
Cells Possess a Variety of Mechanisms for Repairing DNA	213
A DNA Mismatch Repair System Removes Replication Errors That Escape Proofreading	214
Double-Strand DNA Breaks Require a Different Strategy for Repair	215
Homologous Recombination Can Flawlessly Repair DNA Double-Strand Breaks	216
Failure to Repair DNA Damage Can Have Severe Consequences for a Cell or Organism	218
A Record of the Fidelity of DNA Replication and Repair Is Preserved in Genome Sequences	219
Essential Concepts	220
Questions	221
Chapter 7 From DNA to Protein: How Cells Read the Genome	223
FROM DNA TO RNA	224
Portions of DNA Sequence Are Transcribed into RNA	225
Transcription Produces RNA That Is Complementary to One Strand of DNA	226
Cells Produce Various Types of RNA	227
Signals in DNA Tell RNA Polymerase Where to Start and Finish Transcription	228
Initiation of Eukaryotic Gene Transcription Is a Complex Process	230
Eukaryotic RNA Polymerase Requires General Transcription Factors	231
Eukaryotic mRNAs Are Processed in the Nucleus	232
In Eukaryotes, Protein-Coding Genes Are Interrupted by Noncoding Sequences	000
Called Introns	233
Introns Are Removed From Pre-mRNAs by RNA Splicing	234
Mature Eukaryotic mRNAs Are Exported from the Nucleus	236
mRNA Molecules Are Eventually Degraded in the Cytosol	237
The Earliest Cells May Have Had Introns in Their Genes	237
FROM RNA TO PROTEIN	238
An mRNA Sequence Is Decoded in Sets of Three Nucleotides	239
tRNA Molecules Match Amino Acids to Codons in mRNA	242

Specific Enzymes Couple tRNAs to the Correct Amino Acid	243
The mRNA Message Is Decoded by Ribosomes	244
The Ribosome Is a Ribozyme	246
Specific Codons in mRNA Signal the Ribosome Where to Start and to Stop Protein Synthesis	247
Proteins Are Made on Polyribosomes	249
Inhibitors of Prokaryotic Protein Synthesis Are Used as Antibiotics	249
Controlled Protein Breakdown Helps Regulate the Amount of Each Protein in a Cell	250
There Are Many Steps Between DNA and Protein	252
RNA AND THE ORIGINS OF LIFE	253
Life Requires Autocatalysis	253
RNA Can Both Store Information and Catalyze Chemical Reactions	254
RNA Is Thought to Predate DNA in Evolution	255
Essential Concepts	256
Ouestions	258
	200
Chapter 8 Control of Gene Expression	261
AN OVERVIEW OF GENE EXPRESSION	262
The Different Cell Types of a Multicellular Organism Contain the Same DNA	262
Different Cell Types Produce Different Sets of Proteins	263
A Cell Can Change the Expression of Its Genes in Response to External Signals	264
Gene Expression Can Be Regulated at Various Steps from DNA to RNA to Protein	264
HOW TRANSCRIPTIONAL SWITCHES WORK	265
Transcription Regulators Bind to Regulatory DNA Sequences	265
Transcriptional Switches Allow Cells to Respond to Changes in Their Environment	267
Repressors Turn Genes Off and Activators Turn Them On	268
An Activator and a Repressor Control the <i>Lac</i> Operon	268
Eukaryotic Transcription Regulators Control	
Gene Expression from a Distance	270
Eukaryotic Transcription Regulators Help Initiate Transcription by Recruiting Chromatin-Modifying Proteins	271
THE MOLECULAR MECHANISMS THAT	
CREATE SPECIALIZED CELL TYPES	272
Eukaryotic Genes Are Controlled by Combinations of Transcription Regulators	272
The Expression of Different Genes Can Be Coordinated by a Single Protein	273
Combinatorial Control Can Also Generate Different Cell Types	276

Specialized Cell Types Can Be Experimentally Reprogrammed to Become Pluripotent	
Stem Čells	278
The Formation of an Entire Organ Can Be Triggered by a Single Transcription Regulator	278
Epigenetic Mechanisms Allow Differentiated Cells to Maintain Their Identity	279
POST-TRANSCRIPTIONAL CONTROLS	280
Each mRNA Controls Its Own Degradation and Translation	281
Regulatory RNAs Control the Expression of Thousands of Genes	282
MicroRNAs Direct the Destruction of Target mRNAs	282
Small Interfering RNAs Are Produced From Double-Stranded, Foreign RNAs to Protect Cells From Infections	283
Thousands of Long Noncoding RNAs May Also Regulate Mammalian Gene Activity	284
Essential Concepts	284
Questions	286
Chapter 9 How Genes and Genomes	
Evolve	289
GENERATING GENETIC VARIATION	290
In Sexually Reproducing Organisms, Only Changes to the Germ Line Are Passed	
On To Progeny	291
Point Mutations Are Caused by Failures of the Normal Mechanisms for Copying and Repairing DNA	293
Point Mutations Can Change the Regulation of a Gene	294
DNA Duplications Give Rise to Families of Related Genes	294
The Evolution of the Globin Gene Family Shows How Gene Duplication and Divergence	207
Can Produce New Proteins	296
Whole-Genome Duplications Have Shaped the Evolutionary History of Many Species Novel Genes Can Be Created by Exon	298
Shuffling	298
The Evolution of Genomes Has Been Profoundly Influenced by the Movement of Mobile Genetic Elements	299
Genes Can Be Exchanged Between Organisms by Horizontal Gene Transfer	300
RECONSTRUCTING LIFE'S FAMILY TREE	300
Genetic Changes That Provide a Selective Advantage Are Likely to Be Preserved	301
Closely Related Organisms Have Genomes That Are Similar in Organization As Well	201
As Sequence	301
Functionally Important Genome Regions Show Up As Islands of Conserved DNA Sequence	302

Genome Comparisons Show That Vertebrate Genomes Gain and Lose DNA Rapidly	304
Sequence Conservation Allows Us to Trace Even the Most Distant Evolutionary	
Relationships	305
TRANSPOSONS AND VIRUSES	307
Mobile Genetic Elements Encode the Components They Need for Movement	307
The Human Genome Contains Two Major Families of Transposable Sequences	308
Viruses Can Move Between Cells and Organisms	309
Retroviruses Reverse the Normal Flow of Genetic Information	310
EXAMINING THE HUMAN GENOME	311
The Nucleotide Sequences of Human Genomes Show How Our Genes Are Arranged	313
Accelerated Changes in Conserved Genome Sequences Help Reveal What Makes Us	
Human	315
Genome Variation Contributes to Our Individuality—But How?	318
Differences in Gene Regulation May Help Explain How Animals With Similar Genomes	
Can Be So Different	319
Essential Concepts	321
Questions	322
Chapter 10 Medern Recombinant DNA Technology	225
Modern Recombinant DNA Technology	325
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES	325 326
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA	
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules	326
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments	326 327
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using	326 327 327
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences	326 327 327 329 329
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA	326 327 327 329
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences	326 327 327 329 329
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of	326 327 327 329 329 330
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of Recombinant DNAs Recombinant DNA Can Be Inserted Into	 326 327 327 329 329 330 331
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of Recombinant DNAs Recombinant DNA Can Be Inserted Into Plasmid Vectors Recombinant DNA Can Be Copied Inside	 326 327 327 329 329 330 331 331
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of Recombinant DNAs Recombinant DNA Can Be Inserted Into Plasmid Vectors Recombinant DNA Can Be Copied Inside Bacterial Cells	 326 327 327 329 329 330 331 331 332
Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of Recombinant DNAs Recombinant DNA Can Be Inserted Into Plasmid Vectors Recombinant DNA Can Be Copied Inside Bacterial Cells Genes Can Be Isolated from a DNA Library cDNA Libraries Represent the mRNAs Produced	 326 327 327 329 329 330 331 331 332 333

Multiple Cycles of Amplification <i>In Vitro</i> Generate Billions of Copies of the Desired Nucleotide Sequence	337
PCR is Also Used for Diagnostic and Forensic Applications	338
EXPLORING AND EXPLOITING GENE	339
Whole Genomes Can Be Sequenced Rapidly	341
Next-Generation Sequencing Techniques Make Genome Sequencing Faster and Cheaper	343
Comparative Genome Analyses Can Identify Genes and Predict Their Function	346
Analysis of mRNAs By Microarray or RNA-Seq Provides a Snapshot of Gene Expression	346
In Situ Hybridization Can Reveal When and Where a Gene Is Expressed	347
Reporter Genes Allow Specific Proteins to be Tracked in Living Cells	347
The Study of Mutants Can Help Reveal the Function of a Gene	348
RNA Interference (RNAi) Inhibits the Activity of Specific Genes	349
A Known Gene Can Be Deleted or Replaced With an Altered Version	350
Mutant Organisms Provide Useful Models of Human Disease	352
Transgenic Plants Are Important for Both Cell Biology and Agriculture	352
Even Rare Proteins Can Be Made in Large Amounts Using Cloned DNA	354
Essential Concepts	355
Questions	356
Chapter 11	
Membrane Structure	359
THE LIPID BILAYER	360
Membrane Lipids Form Bilayers in Water	361
The Lipid Bilayer Is a Flexible Two-dimensional Fluid	364
The Fluidity of a Lipid Bilayer Depends on Its Composition	365
Membrane Assembly Begins in the ER	366
Certain Phospholipids Are Confined to One Side of the Membrane	367
MEMBRANE PROTEINS	369
Membrane Proteins Associate with the Lipid Bilayer in Different Ways	370
A Polypeptide Chain Usually Crosses the Lipid Bilayer as an α Helix	371
Membrane Proteins Can Be Solubilized in Detergents	
	372
We Know the Complete Structure of Relatively Few Membrane Proteins	372 373

A Cell Can Restrict the Movement of Its	07/
Membrane Proteins	376
The Cell Surface Is Coated with Carbohydrate	377
Essential Concepts Ouestions	380 381
Questions	301
Chapter 12	
Transport Across Cell Membranes	383
PRINCIPLES OF TRANSMEMBRANE TRANSPORT	384
Lipid Bilayers Are Impermeable to Ions and Most Uncharged Polar Molecules	384
The Ion Concentrations Inside a Cell Are Very Different from Those Outside	385
Differences in the Concentration of Inorganic Ions Across a Cell Membrane Create a	205
Membrane Potential Cells Contain Two Classes of Membrane	385
Transport Proteins: Transporters and Channels Solutes Cross Membranes by Either Passive	386
or Active Transport	386
Both the Concentration Gradient and Membrane Potential Influence the Passive Transport of	
Charged Solutes	387
Water Moves Passively Across Cell Membranes Down Its Concentration Gradient—a Process	
Called Osmosis	388
TRANSPORTERS AND THEIR FUNCTIONS	389
Passive Transporters Move a Solute Along Its Electrochemical Gradient	390
Pumps Actively Transport a Solute Against Its Electrochemical Gradient	390
The Na ⁺ Pump in Animal Cells Uses Energy Supplied by ATP to Expel Na ⁺ and Bring in K ⁺	391
The Na ⁺ Pump Generates a Steep	
Concentration Gradient of Na ⁺ Across the Plasma Membrane	392
Ca ²⁺ Pumps Keep the Cytosolic Ca ²⁺ Concentration Low	392
Coupled Pumps Exploit Solute Gradients to Mediate Active Transport	393
The Electrochemical Na ⁺ Gradient Drives	
Coupled Pumps in the Plasma Membrane of Animal Cells	393
Electrochemical H ⁺ Gradients Drive Coupled Pumps in Plants, Fungi, and Bacteria	395
ION CHANNELS AND THE MEMBRANE POTENTIAL	396
Ion Channels Are Ion-selective and Gated	397
Membrane Potential Is Governed by the Permeability of a Membrane to Specific Ions	398
Ion Channels Randomly Snap Between Open and Closed States	400
Different Types of Stimuli Influence the Opening and Closing of Ion Channels	401

Voltage-gated Ion Channels Respond to the Membrane Potential	403
ION CHANNELS AND NERVE CELL SIGNALING	403
Action Potentials Allow Rapid Long-Distance Communication Along Axons	404
Action Potentials Are Mediated by Voltage- gated Cation Channels	405
Voltage-gated Ca ²⁺ Channels in Nerve Terminals Convert an Electrical Signal into a Chemical Signal	409
Transmitter-gated Ion Channels in the Postsynaptic Membrane Convert the Chemical Signal Back into an Electrical Signal	410
Neurotransmitters Can Be Excitatory or Inhibitory	411
Most Psychoactive Drugs Affect Synaptic Signaling by Binding to Neurotransmitter Receptors	413
The Complexity of Synaptic Signaling Enables Us to Think, Act, Learn, and Remember	413
Optogenetics Uses Light-gated Ion Channels to Transiently Activate or Inactivate Neurons	
in Living Animals	414
Essential Concepts	415
Questions	417
Chapter 13	
How Cells Obtain Energy From Food	419
How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS	419 420
THE BREAKDOWN AND UTILIZATION OF	
THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in	420
THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting	<mark>420</mark> 421
THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar	420 421 422
THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the	420 421 422 423
THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy	420 421 422 423 425
THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted	420 421 422 423 425 426
 THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by 	420 421 422 423 425 426 430
 THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups to CO₂ Many Biosynthetic Pathways Begin with 	420 421 422 423 425 426 430 430
 THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups to CO₂ Many Biosynthetic Pathways Begin with Glycolysis or the Citric Acid Cycle Electron Transport Drives the Synthesis of the 	420 421 422 423 425 426 430 430 433
 THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups to CO₂ Many Biosynthetic Pathways Begin with Glycolysis or the Citric Acid Cycle Electron Transport Drives the Synthesis of the Majority of the ATP in Most Cells 	420 421 422 423 425 426 430 430 433 438
 THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups to CO₂ Many Biosynthetic Pathways Begin with Glycolysis or the Citric Acid Cycle Electron Transport Drives the Synthesis of the Majority of the ATP in Most Cells REGULATION OF METABOLISM Catabolic and Anabolic Reactions Are 	420 421 422 423 425 426 430 430 430 433 438 439 440

Essential Concepts	445
Questions	446
Chapter 14	
Energy Generation in Mitochondria and Chloroplasts	447
Cells Obtain Most of Their Energy by a Membrane-based Mechanism	448
Chemiosmotic Coupling is an Ancient Process, Preserved in Present-Day Cells	449
MITOCHONDRIA AND OXIDATIVE PHOSPHORYLATION	451
Mitochondria Can Change Their Shape, Location, and Number to Suit a Cell's Needs	451
A Mitochondrion Contains an Outer Membrane, an Inner Membrane, and Two Internal Compartments	452
The Citric Acid Cycle Generates the High-Energy	752
Electrons Required for ATP Production The Movement of Electrons is Coupled to the	453
Pumping of Protons	454
Protons Are Pumped Across the Inner Mitochondrial Membrane by Proteins in the Electron-Transport Chain	455
Proton Pumping Produces a Steep Electrochemical Proton Gradient Across the Inner Mitochondrial Membrane	456
ATP Synthase Uses the Energy Stored in the Electrochemical Proton Gradient to Produce ATP	457
Coupled Transport Across the Inner Mitochondrial Membrane Is Also Driven by the Electrochemical Proton Gradient	459
The Rapid Conversion of ADP to ATP in Mitochondria Maintains a High ATP/ADP Ratio in Cells	459
Cell Respiration Is Amazingly Efficient	460
MOLECULAR MECHANISMS OF ELECTRON	
TRANSPORT AND PROTON PUMPING Protons Are Readily Moved by the Transfer of	461
Electrons The Redox Potential Is a Measure of Electron	461
Affinities	464
Electron Transfers Release Large Amounts of Energy	465
Metals Tightly Bound to Proteins Form Versatile Electron Carriers	465
Cytochrome <i>c</i> Oxidase Catalyzes the Reduction of Molecular Oxygen	468
CHLOROPLASTS AND PHOTOSYNTHESIS	469
Chloroplasts Resemble Mitochondria but Have an Extra Compartment—the Thylakoid	470
Photosynthesis Generates—Then Consumes— ATP and NADPH	471
Chlorophyll Molecules Absorb the Energy of Sunlight	472

Detailed Contents	xix

Excited Chlorophyll Molecules Funnel Energy into a Reaction Center	472
A Pair of Photosystems Cooperate to Generate Both ATP and NADPH	473
Oxygen Is Generated by a Water-Splitting Complex Associated with Photosystem II	474
The Special Pair in Photosystem I Receives its Electrons from Photosystem II	475
Carbon Fixation Uses ATP and NADPH to Convert CO ₂ into Sugars	476
Sugars Generated by Carbon Fixation Can Be Stored As Starch or Consumed to Produce ATP	478
THE EVOLUTION OF ENERGY-GENERATING	
SYSTEMS	479
Oxidative Phosphorylation Evolved in Stages Photosynthetic Bacteria Made Even Fewer	479
Demands on Their Environment The Lifestyle of <i>Methanococcus</i> Suggests That	480
Chemiosmotic Coupling Is an Ancient Process	481
Essential Concepts	482
Questions	483
Chapter 15	
Intracellular Compartments and	
Protein Transport	487
MEMBRANE-ENCLOSED ORGANELLES	488
Eukaryotic Cells Contain a Basic Set of Membrane-enclosed Organelles	488
Membrane-enclosed Organelles Evolved in Different Ways	491
PROTEIN SORTING	492
Proteins Are Transported into Organelles by Three Mechanisms	492
Signal Sequences Direct Proteins to the Correct Compartment	494
Proteins Enter the Nucleus Through Nuclear Pores	495
Proteins Unfold to Enter Mitochondria and Chloroplasts	497
Proteins Enter Peroxisomes from Both the Cytosol and the Endoplasmic Reticulum	498
Proteins Enter the Endoplasmic Reticulum While Being Synthesized	498
Soluble Proteins Made on the ER Are Released into the ER Lumen	499
into the ER Lumen Start and Stop Signals Determine the	499
into the ER Lumen Start and Stop Signals Determine the Arrangement of a Transmembrane Protein	499 501
into the ER Lumen Start and Stop Signals Determine the	
into the ER Lumen Start and Stop Signals Determine the Arrangement of a Transmembrane Protein in the Lipid Bilayer VESICULAR TRANSPORT Transport Vesicles Carry Soluble Proteins and	501 503
into the ER Lumen Start and Stop Signals Determine the Arrangement of a Transmembrane Protein in the Lipid Bilayer VESICULAR TRANSPORT	501

Vesicle Docking Depends on Tethers and SNAREs	505
SECRETORY PATHWAYS	507 507
Most Proteins Are Covalently Modified in the ER Exit from the ER Is Controlled to Ensure Protein Quality	507
The Size of the ER Is Controlled by the Demand for Protein	509
Proteins Are Further Modified and Sorted in the Golgi Apparatus	510
Secretory Proteins Are Released from the Cell by Exocytosis	511
ENDOCYTIC PATHWAYS	515
Specialized Phagocytic Cells Ingest Large Particles	515
Fluid and Macromolecules Are Taken Up by Pinocytosis	516
Receptor-mediated Endocytosis Provides a Specific Route into Animal Cells	517
Endocytosed Macromolecules Are Sorted in Endosomes	518
Lysosomes Are the Principal Sites of Intracellular Digestion	519
Essential Concepts	520
Questions	522
Chamber 4/	
Chapter 16 Cell Signaling	525
GENERAL PRINCIPLES OF CELL SIGNALING	526
Signals Can Act over a Long or Short Range	526
Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State	528
A Cell's Response to a Signal Can Be Fast	520
or Slow	531
Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors	531
Some Dissolved Gases Cross the Plasma Membrane and Activate Intracellular	
Enzymes Directly	533
Cell-Surface Receptors Relay Extracellular Signals via Intracellular Signaling Pathways	534
Some Intracellular Signaling Proteins Act as Molecular Switches	535
Cell-Surface Receptors Fall into Three Main Classes	537
Ion-channel-coupled Receptors Convert Chemical Signals into Electrical Ones	538
G-PROTEIN-COUPLED RECEPTORS	539
Stimulation of GPCRs Activates G-Protein Subunits	540
Some Bacterial Toxins Cause Disease by Altering the Activity of G Proteins	541
Some G Proteins Directly Regulate Ion Channels	542

Many G Proteins Activate Membrane-bound Enzymes that Produce Small Messenger	
Molecules	543
The Cyclic AMP Signaling Pathway Can Activate Enzymes and Turn On Genes	544
The Inositol Phospholipid Pathway Triggers a Rise in Intracellular Ca ²⁺	546
A Ca ²⁺ Signal Triggers Many Biological Processes	548
GPCR-Triggered Intracellular Signaling	
Cascades Can Achieve Astonishing Speed, Sensitivity, and Adaptability	549
ENZYME-COUPLED RECEPTORS	551
Activated RTKs Recruit a Complex of Intracellular Signaling Proteins	552
Most RTKs Activate the Monomeric GTPase Ras	553
RTKs Activate PI 3-Kinase to Produce Lipid	FFF
Docking Sites in the Plasma Membrane Some Receptors Activate a Fast Track to	555
the Nucleus	558
Cell–Cell Communication Evolved	
Independently in Plants and Animals	559
Protein Kinase Networks Integrate Information to Control Complex Cell Behaviors	560
Essential Concepts	561
Questions	563
Chapter 17	
Chapter 17 Cytoskeleton	565
•	565 567
Cytoskeleton	
Cytoskeleton INTERMEDIATE FILAMENTS	567
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells	<mark>567</mark> 567
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a	<mark>567</mark> 567 569
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with	567 567 569 570
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends	567 567 569 570
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells	567 567 569 570 571
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule-	567 567 569 570 571 572
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic	567 569 570 571 572 573
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability	567 569 570 571 572 573 574
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by	567 569 570 571 572 573 574 574
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by Drugs Microtubules Organize the Cell Interior Motor Proteins Drive Intracellular Transport	567 569 570 571 572 573 573 574 574 575
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by Drugs Microtubules Organize the Cell Interior Motor Proteins Drive Intracellular Transport Microtubules and Motor Proteins Position	567 569 570 571 572 573 574 574 575 576 577
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by Drugs Microtubules Organize the Cell Interior Motor Proteins Drive Intracellular Transport Microtubules and Motor Proteins Position Organelles in the Cytoplasm	567 569 570 571 572 573 574 574 574 575 576
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by Drugs Microtubules Organize the Cell Interior Motor Proteins Drive Intracellular Transport Microtubules and Motor Proteins Position Organelles in the Cytoplasm Cilia and Flagella Contain Stable Microtubules Moved by Dynein	567 569 570 571 572 573 574 574 575 576 577
Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by Drugs Microtubules Organize the Cell Interior Motor Proteins Drive Intracellular Transport Microtubules and Motor Proteins Position Organelles in the Cytoplasm Cilia and Flagella Contain Stable Microtubules	567 569 570 571 572 573 574 574 574 575 576 577 578

Actin and Tubulin Polymerize by Similar Mechanisms	585
Many Proteins Bind to Actin and Modify Its Properties	586
A Cortex Rich in Actin Filaments Underlies the	
Plasma Membrane of Most Eukaryotic Cells	588
Cell Crawling Depends on Cortical Actin	588
Actin Associates with Myosin to Form Contractile Structures	591
Extracellular Signals Can Alter the Arrangement of Actin Filaments	591
MUSCLE CONTRACTION	592
Muscle Contraction Depends on Interacting Filaments of Actin and Myosin	593
Actin Filaments Slide Against Myosin Filaments During Muscle Contraction	594
Muscle Contraction Is Triggered by a Sudden	074
Rise in Cytosolic Ca ²⁺	595
Different Types of Muscle Cells Perform	
Different Functions	598
Essential Concepts	599
Questions	600
Chapter 18 The Cell Division Cycle	402
The Cell-Division Cycle	603
OVERVIEW OF THE CELL CYCLE	604
The Eukaryotic Cell Cycle Usually Includes Four Phases	605
A Cell-Cycle Control System Triggers the Major Processes of the Cell Cycle	606
Cell-Cycle Control is Similar in All Eukaryotes	607
THE CELL-CYCLE CONTROL SYSTEM	607
The Cell-Cycle Control System Depends on Cyclically Activated Protein Kinases called Cdks	607
Different Cyclin–Cdk Complexes Trigger	
Different Steps in the Cell Cycle	608
Cyclin Concentrations are Regulated by Transcription and by Proteolysis	611
The Activity of Cyclin–Cdk Complexes Depends on Phosphorylation and Dephosphorylation	612
Cdk Activity Can be Blocked by Cdk Inhibitor Proteins	612
The Cell-Cycle Control System Can Pause the Cycle in Various Ways	612
G ₁ PHASE	613
Cdks are Stably Inactivated in G ₁	614
Mitogens Promote the Production of the Cyclins that Stimulate Cell Division	614
DNA Damage Can Temporarily Halt Progression	J . r
Through G_1	615
Cells Can Delay Division for Prolonged Periods	
by Entering Specialized Nondividing States	615
S PHASE	616

S-Cdk Initiates DNA Replication and Blocks Re-Replication	617
Incomplete Replication Can Arrest the Cell	017
Cycle in G_2	618
M PHASE	618
M-Cdk Drives Entry Into M Phase and Mitosis	618
Cohesins and Condensins Help Configure Duplicated Chromosomes for Separation	619
Different Cytoskeletal Assemblies Carry Out Mitosis and Cytokinesis	619
M Phase Occurs in Stages	620
MITOSIS	621
Centrosomes Duplicate To Help Form the Two Poles of the Mitotic Spindle	621
The Mitotic Spindle Starts to Assemble in	624
Prophase Chromosomes Attach to the Mitotic Spindle	024
at Prometaphase	624
Chromosomes Assist in the Assembly of the Mitotic Spindle	626
Chromosomes Line Up at the Spindle Equator at Metaphase	626
Proteolysis Triggers Sister-Chromatid Separation	
at Anaphase	627
Chromosomes Segregate During Anaphase	627
An Unattached Chromosome Will Prevent	(00
Sister-Chromatid Separation	629
The Nuclear Envelope Re-forms at Telophase	629
CYTOKINESIS	630
The Mitotic Spindle Determines the Plane of Cytoplasmic Cleavage	630
The Contractile Ring of Animal Cells Is Made of Actin and Myosin Filaments	631
Cytokinesis in Plant Cells Involves the	632
Formation of a New Cell Wall	osz
Membrane-Enclosed Organelles Must Be	032
Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a	
Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides	632
Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE	632 633
Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE Apoptosis Helps Regulate Animal Cell Numbers	632
Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE	632 633
 Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE Apoptosis Helps Regulate Animal Cell Numbers Apoptosis Is Mediated by an Intracellular Proteolytic Cascade The Intrinsic Apoptotic Death Program Is 	632 <mark>633</mark> 634
Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE Apoptosis Helps Regulate Animal Cell Numbers Apoptosis Is Mediated by an Intracellular Proteolytic Cascade	632 633 634 634 634
 Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE Apoptosis Helps Regulate Animal Cell Numbers Apoptosis Is Mediated by an Intracellular Proteolytic Cascade The Intrinsic Apoptotic Death Program Is Regulated by the Bcl2 Family of Intracellular 	632 633 634 634
 Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE Apoptosis Helps Regulate Animal Cell Numbers Apoptosis Is Mediated by an Intracellular Proteolytic Cascade The Intrinsic Apoptotic Death Program Is Regulated by the Bcl2 Family of Intracellular Proteins 	632 633 634 634 634
 Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE Apoptosis Helps Regulate Animal Cell Numbers Apoptosis Is Mediated by an Intracellular Proteolytic Cascade The Intrinsic Apoptotic Death Program Is Regulated by the Bcl2 Family of Intracellular Proteins Extracellular Signals Can Also Induce Apoptosis Animal Cells Require Extracellular Signals 	632 633 634 634 634 636 637
 Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE Apoptosis Helps Regulate Animal Cell Numbers Apoptosis Is Mediated by an Intracellular Proteolytic Cascade The Intrinsic Apoptotic Death Program Is Regulated by the Bcl2 Family of Intracellular Proteins Extracellular Signals Can Also Induce Apoptosis Animal Cells Require Extracellular Signals to Survive, Grow, and Divide Survival Factors Suppress Apoptosis Mitogens Stimulate Cell Division by Promoting 	 632 633 634 636 637 637 638
 Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE Apoptosis Helps Regulate Animal Cell Numbers Apoptosis Is Mediated by an Intracellular Proteolytic Cascade The Intrinsic Apoptotic Death Program Is Regulated by the Bcl2 Family of Intracellular Proteins Extracellular Signals Can Also Induce Apoptosis Animal Cells Require Extracellular Signals to Survive, Grow, and Divide Survival Factors Suppress Apoptosis Mitogens Stimulate Cell Division by Promoting Entry into S Phase 	632 633 634 634 636 637 637 638 639
 Membrane-Enclosed Organelles Must Be Distributed to Daughter Cells When a Cell Divides CONTROL OF CELL NUMBERS AND CELL SIZE Apoptosis Helps Regulate Animal Cell Numbers Apoptosis Is Mediated by an Intracellular Proteolytic Cascade The Intrinsic Apoptotic Death Program Is Regulated by the Bcl2 Family of Intracellular Proteins Extracellular Signals Can Also Induce Apoptosis Animal Cells Require Extracellular Signals to Survive, Grow, and Divide Survival Factors Suppress Apoptosis Mitogens Stimulate Cell Division by Promoting 	 632 633 634 636 637 637 638

Essential Concepts	641
Questions	643
Chapter 19 Sexual Reproduction and the Power of Genetics	645
THE BENEFITS OF SEX	646
Sexual Reproduction Involves Both Diploid and Haploid Cells	646
Sexual Reproduction Generates Genetic Diversity	647
Sexual Reproduction Gives Organisms a Competitive Advantage in a Changing Environment	648
MEIOSIS AND FERTILIZATION	648
Meiosis Involves One Round of DNA Replication Followed by Two Rounds of Cell Division	649
Meiosis Requires the Pairing of Duplicated Homologous Chromosomes Crossing-Over Occurs Between the Duplicated	651
Maternal and Paternal Chromosomes in Each Bivalent	652
Chromosome Pairing and Crossing-Over Ensure the Proper Segregation of Homologs	653
The Second Meiotic Division Produces Haploid Daughter Cells	654
Haploid Gametes Contain Reassorted Genetic Information	654
Meiosis Is Not Flawless	656
Fertilization Reconstitutes a Complete Diploid Genome	657
MENDEL AND THE LAWS OF INHERITANCE	657
Mendel Studied Traits That Are Inherited in a Discrete Fashion	658
Mendel Disproved the Alternative Theories of Inheritance	658
Mendel's Experiments Revealed the Existence of Dominant and Recessive Alleles	659
Each Gamete Carries a Single Allele for Each Character	660
Mendel's Law of Segregation Applies to All Sexually Reproducing Organisms	661
Alleles for Different Traits Segregate Independently The Rehavior of Chromosomer During Maiasia	662
The Behavior of Chromosomes During Meiosis Underlies Mendel's Laws of Inheritance	664
Even Genes on the Same Chromosome Can Segregate Independently by Crossing-Over	664
Mutations in Genes Can Cause a Loss of Function or a Gain of Function	665
Each of Us Carries Many Potentially Harmful Recessive Mutations	666
GENETICS AS AN EXPERIMENTAL TOOL	667
The Classical Genetic Approach Begins with Random Mutagenesis	667

Genetic Screens Identify Mutants Deficient in Specific Cell Processes	668
Conditional Mutants Permit the Study of Lethal Mutations	670
A Complementation Test Reveals Whether Two Mutations Are in the Same Gene	671
Rapid and Cheap DNA Sequencing Has Revolutionized Human Genetic Studies	672
Linked Blocks of Polymorphisms Have Been Passed Down from Our Ancestors	672
Our Genome Sequences Provide Clues to our Evolutionary History	673
Polymorphisms Can Aid the Search for Mutations Associated with Disease	674
Genomics Is Accelerating the Discovery of Rare Mutations that Predispose Us to	
Serious Disease	675
Essential Concepts	678
Questions	679
Chapter 20	
Cell Communities: Tissues, Stem Cells,	
and Cancer	683
EXTRACELLULAR MATRIX AND CONNECTIVE TISSUES	684
Plant Cells Have Tough External Walls	685
Cellulose Microfibrils Give the Plant Cell Wall	
Its Tensile Strength	686
Animal Connective Tissues Consist Largely of Extracellular Matrix	688
Collagen Provides Tensile Strength in Animal Connective Tissues	688
Cells Organize the Collagen That They Secrete	690
Integrins Couple the Matrix Outside a Cell to the Cytoskeleton Inside It	691

Gels of Polysaccharides and Proteins Fill Spaces and Resist Compression	692
EPITHELIAL SHEETS AND CELL JUNCTIONS	694
Epithelial Sheets Are Polarized and Rest on a Basal Lamina	695
Tight Junctions Make an Epithelium Leak- proof and Separate Its Apical and Basal	
Surfaces	696
Cytoskeleton-linked Junctions Bind Epithelial Cells Robustly to One Another and to the	
Basal Lamina	697

Gap Junctions Allow Cytosolic Inorganic Ions
and Small Molecules to Pass from Cell to Cell700TISSUE MAINTENANCE AND RENEWAL702Tissues Are Organized Mixtures of Many
Cell Types703

Cell Types	703
Different Tissues Are Renewed at Different	
Rates	705
Stem Cells Generate a Continuous Supply	
of Terminally Differentiated Cells	705

Specific Signals Maintain Stem-Cell Populations	707
Stem Cells Can Be Used to Repair Lost or Damaged Tissues	708
Therapeutic Cloning and Reproductive Cloning Are Very Different Enterprises	710
Induced Pluripotent Stem Cells Provide a Convenient Source of Human ES-like Cells	711
CANCER	712
Cancer Cells Proliferate, Invade, and Metastasize	712
Epidemiological Studies Identify Preventable Causes of Cancer	713
Cancers Develop by an Accumulation of Mutations	714
Cancer Cells Evolve, Giving Them an Increasingly Competitive Advantage	715
Two Main Classes of Genes Are Critical for Cancer: Oncogenes and Tumor Suppressor Genes	717
Cancer-causing Mutations Cluster in a Few Fundamental Pathways	719
Colorectal Cancer Illustrates How Loss of a Tumor Suppressor Gene Can Lead to Cancer	719
An Understanding of Cancer Cell Biology Opens the Way to New Treatments	720
Essential Concepts	724
Questions	726

Page left intentionally blank

CHAPTER **ONE**

Cells: The Fundamental Units of Life

What does it mean to be living? Petunias, people, and pond scum are all alive; stones, sand, and summer breezes are not. But what are the fundamental properties that characterize living things and distinguish them from nonliving matter?

The answer begins with a basic fact that is taken for granted now, but marked a revolution in thinking when first established 175 years ago. All living things (or *organisms*) are built from **cells**: small, membraneenclosed units filled with a concentrated aqueous solution of chemicals and endowed with the extraordinary ability to create copies of themselves by growing and then dividing in two. The simplest forms of life are solitary cells. Higher organisms, including ourselves, are communities of cells derived by growth and division from a single founder cell. Every animal or plant is a vast colony of individual cells, each of which performs a specialized function that is regulated by intricate systems of cell-to-cell communication.

Cells, therefore, are the fundamental units of life. Thus it is to *cell biology*—the study of cells and their structure, function, and behavior—that we must look for an answer to the question of what life is and how it works. With a deeper understanding of cells, we can begin to tackle the grand historical problems of life on Earth: its mysterious origins, its stunning diversity produced by billions of years of evolution, and its invasion of every conceivable habitat. At the same time, cell biology can provide us with answers to the questions we have about ourselves: Where did we come from? How do we develop from a single fertilized egg cell? How is each of us similar to—yet different from—everyone else on Earth? Why do we get sick, grow old, and die?

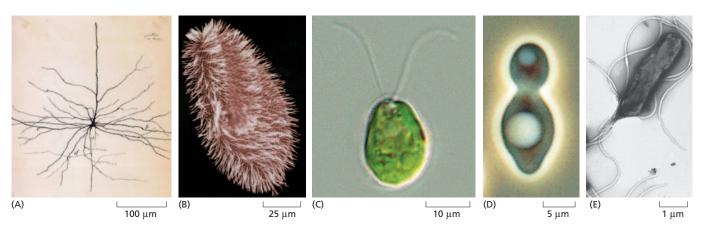
UNITY AND DIVERSITY OF CELLS

CELLS UNDER THE MICROSCOPE

THE PROKARYOTIC CELL

MODEL ORGANISMS

In this chapter, we begin by looking at the great variety of forms that cells can show, and we take a preliminary glimpse at the chemical machinery that all cells have in common. We then consider how cells are made visible under the microscope and what we see when we peer inside them. Finally, we discuss how we can exploit the similarities of living things to achieve a coherent understanding of all forms of life on Earth—from the tiniest bacterium to the mightiest oak.


UNITY AND DIVERSITY OF CELLS

Cell biologists often speak of "the cell" without specifying any particular cell. But cells are not all alike; in fact, they can be wildly different. Biologists estimate that there may be up to 100 million distinct species of living things on our planet. Before delving deeper into cell biology, we must take stock: What does a bacterium have in common with a butterfly? What do the cells of a rose have in common with those of a dolphin? And in what ways do the plethora of cell types within an individual multicellular organism differ?

Cells Vary Enormously in Appearance and Function

Let us begin with size. A bacterial cell—say a *Lactobacillus* in a piece of cheese—is a few **micrometers**, or μ m, in length. That's about 25 times smaller than the width of a human hair. A frog egg—which is also a single cell—has a diameter of about 1 millimeter. If we scaled them up to make the *Lactobacillus* the size of a person, the frog egg would be half a mile high.

Cells vary just as widely in their shape (**Figure 1–1**). A typical nerve cell in your brain, for example, is enormously extended; it sends out its electrical signals along a fine protrusion that is 10,000 times longer than it is thick, and it receives signals from other nerve cells through a mass of shorter processes that sprout from its body like the branches of a tree (see Figure 1–1A). A *Paramecium* in a drop of pond water is shaped like a submarine and is covered with thousands of *cilia*—hairlike extensions whose sinuous beating sweeps the cell forward, rotating as it goes (Figure 1–1B). A cell in the surface layer of a plant is squat and immobile, surrounded

Figure 1–1 Cells come in a variety of shapes and sizes. Note the very different scales of these micrographs. (A) Drawing of a single nerve cell from a mammalian brain. This cell has a huge branching tree of processes, through which it receives signals from as many as 100,000 other nerve cells. (B) *Paramecium.* This protozoan—a single giant cell—swims by means of the beating cilia that cover its surface. (C) *Chlamydomonas.* This type of single-celled green algae is found all over the world—in soil, fresh water, oceans, and even in the snow at the top of mountains. The cell makes its food like plants do—via photosynthesis—and it pulls itself through the water using its paired flagella to do the breaststroke. (D) *Saccharomyces cerevisiae.* This yeast cell, used in baking bread, reproduces itself by a process called budding. (E) *Helicobacter pylori.* This bacterium—a causative agent of stomach ulcers—uses a handful of whiplike flagella to propel itself through the stomach lining. (A, copyright Herederos de Santiago Ramón y Cajal, 1899; B, courtesy of Anne Fleury, Michel Laurent, and André Adoutte; C, courtesy of Brian Piasecki; E, courtesy of Yutaka Tsutsumi.)

by a rigid box of cellulose with an outer waterproof coating of wax. A neutrophil or a macrophage in the body of an animal, by contrast, crawls through tissues, constantly pouring itself into new shapes, as it searches for and engulfs debris, foreign microorganisms, and dead or dying cells. And so on.

Cells are also enormously diverse in their chemical requirements. Some require oxygen to live; for others this gas is deadly. Some cells consume little more than air, sunlight, and water as their raw materials; others need a complex mixture of molecules produced by other cells.

These differences in size, shape, and chemical requirements often reflect differences in cell function. Some cells are specialized factories for the production of particular substances, such as hormones, starch, fat, latex, or pigments. Others are engines, like muscle cells that burn fuel to do mechanical work. Still others are electricity generators, like the modified muscle cells in the electric eel.

Some modifications specialize a cell so much that they spoil its chances of leaving any descendants. Such specialization would be senseless for a cell that lived a solitary life. In a multicellular organism, however, there is a division of labor among cells, allowing some cells to become specialized to an extreme degree for particular tasks and leaving them dependent on their fellow cells for many basic requirements. Even the most basic need of all, that of passing on the genetic instructions of the organism to the next generation, is delegated to specialists—the egg and the sperm.

Living Cells All Have a Similar Basic Chemistry

Despite the extraordinary diversity of plants and animals, people have recognized from time immemorial that these organisms have something in common, something that entitles them all to be called living things. But while it seemed easy enough to recognize life, it was remarkably difficult to say in what sense all living things were alike. Textbooks had to settle for defining life in abstract general terms related to growth, reproduction, and an ability to respond to the environment.

The discoveries of biochemists and molecular biologists have provided an elegant solution to this awkward situation. Although the cells of all living things are infinitely varied when viewed from the outside, they are fundamentally similar inside. We now know that cells resemble one another to an astonishing degree in the details of their chemistry. They are composed of the same sorts of molecules, which participate in the same types of chemical reactions (discussed in Chapter 2). In all organisms, genetic information—in the form of genes—is carried in DNA molecules. This information is written in the same chemical code, constructed out of the same chemical building blocks, interpreted by essentially the same chemical machinery, and replicated in the same way when an organism reproduces. Thus, in every cell, the long **DNA** polymer chains are made from the same set of four monomers, called *nucleotides*, strung together in different sequences like the letters of an alphabet to convey information. In every cell, the information encoded in the DNA is read out, or transcribed, into a chemically related set of polymers called **RNA**. A subset of these RNA molecules is in turn translated into yet another type of polymer called a **protein**. This flow of information—from DNA to RNA to protein—is so fundamental to life that it is referred to as the *central* dogma (Figure 1-2).

The appearance and behavior of a cell are dictated largely by its protein molecules, which serve as structural supports, chemical catalysts,

QUESTION 1–1

"Life" is easy to recognize but difficult to define. According to one popular biology text, living things: 1. Are highly organized compared to natural inanimate objects.

 Display homeostasis, maintaining a relatively constant internal environment.

3. Reproduce themselves.

4. Grow and develop from simple beginnings.

5. Take energy and matter from the environment and transform it.

6. Respond to stimuli.

7. Show adaptation to their environment.

Score a person, a vacuum cleaner, and a potato with respect to these characteristics.

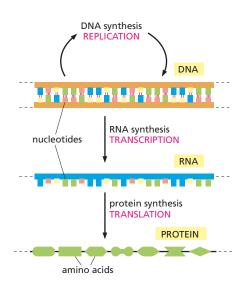


Figure 1–2 In all living cells, genetic information flows from DNA to RNA (transcription) and from RNA to protein (translation)—a sequence known as the central dogma. The sequence of nucleotides in a particular segment of DNA (a gene) is transcribed into an RNA molecule, which can then be translated into the linear sequence of amino acids of a protein. Only a small part of the gene, RNA, and protein are shown.

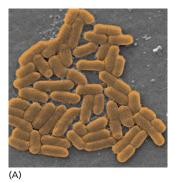


Figure 1–3 All living organisms are constructed from cells. A colony of bacteria, a butterfly, a rose, and a dolphin are all made of cells that have a fundamentally similar chemistry and operate according to the same basic principles. (A, courtesy of Janice Carr; C, courtesy of the John Innes Foundation; D, courtesy of Jonathan Gordon, IFAW.)

QUESTION 1–2

Mutations are mistakes in the DNA that change the genetic plan from the previous generation. Imagine a shoe factory. Would you expect mistakes (i.e., unintentional changes) in copying the shoe design to lead to improvements in the shoes produced? Explain your answer.

molecular motors, and so on. Proteins are built from *amino acids*, and all organisms use the same set of 20 amino acids to make their proteins. But the amino acids are linked in different sequences, giving each type of protein molecule a different three-dimensional shape, or *conformation*, just as different sequences of letters spell different words. In this way, the same basic biochemical machinery has served to generate the whole gamut of life on Earth (**Figure 1–3**). A more detailed discussion of the structure and function of proteins, RNA, and DNA is presented in Chapters 4 through 8.

If cells are the fundamental unit of living matter, then nothing less than a cell can truly be called living. Viruses, for example, are compact packages of genetic information—in the form of DNA or RNA—encased in protein but they have no ability to reproduce themselves by their own efforts. Instead, they get themselves copied by parasitizing the reproductive machinery of the cells that they invade. Thus, viruses are chemical zombies: they are inert and inactive outside their host cells, but they can exert a malign control over a cell once they gain entry.

All Present-Day Cells Have Apparently Evolved from the Same Ancestral Cell

A cell reproduces by replicating its DNA and then dividing in two, passing a copy of the genetic instructions encoded in its DNA to each of its daughter cells. That is why daughter cells resemble the parent cell. However, the copying is not always perfect, and the instructions are occasionally corrupted by *mutations* that change the DNA. For this reason, daughter cells do not always match the parent cell exactly.

Mutations can create offspring that are changed for the worse (in that they are less able to survive and reproduce), changed for the better (in that they are better able to survive and reproduce), or changed in a neutral way (in that they are genetically different but equally viable). The struggle for survival eliminates the first, favors the second, and tolerates the third. The genes of the next generation will be the genes of the survivors.

On occasion, the pattern of descent may be complicated by sexual reproduction, in which two cells of the same species fuse, pooling their DNA. The genetic cards are then shuffled, re-dealt, and distributed in new combinations to the next generation, to be tested again for their ability to promote survival and reproduction.

These simple principles of genetic change and selection, applied repeatedly over billions of cell generations, are the basis of **evolution**—the process by which living species become gradually modified and adapted to their environment in more and more sophisticated ways. Evolution offers a startling but compelling explanation of why present-day cells are so similar in their fundamentals: they have all inherited their genetic instructions from the same common ancestor. It is estimated that this ancestral cell existed between 3.5 and 3.8 billion years ago, and we must suppose that it contained a prototype of the universal machinery of all life on Earth today. Through a very long process of mutation and natural selection, the descendants of this ancestral cell have gradually diverged to fill every habitat on Earth with organisms that exploit the potential of the machinery in an endless variety of ways.

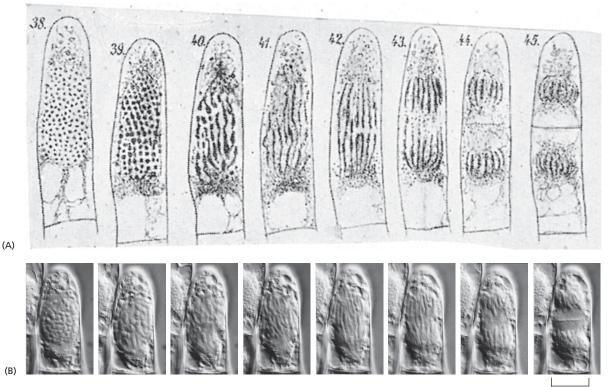
Genes Provide the Instructions for Cell Form, Function, and Complex Behavior

A cell's **genome**—that is, the entire sequence of nucleotides in an organism's DNA—provides a genetic program that instructs the cell how to behave. For the cells of plant and animal embryos, the genome directs the growth and development of an adult organism with hundreds of different cell types. Within an individual plant or animal, these cells can be extraordinarily varied, as we discuss in Chapter 20. Fat cells, skin cells, bone cells, and nerve cells seem as dissimilar as any cells could be. Yet all these *differentiated cell types* are generated during embryonic development from a single fertilized egg cell, and all contain identical copies of the DNA of the species. Their varied characters stem from the way that individual cells use their genetic instructions. Different cells *express* different genes: that is, they use their genes to produce some proteins and not others, depending on their internal state and on cues that they and their ancestor cells have received from their surroundings—mainly signals from other cells in the organism.

The DNA, therefore, is not just a shopping list specifying the molecules that every cell must make, and a cell is not just an assembly of all the items on the list. Each cell is capable of carrying out a variety of biological tasks, depending on its environment and its history, and it selectively uses the information encoded in its DNA to guide its activities. Later in this book, we will see in detail how DNA defines both the parts list of the cell and the rules that decide when and where these parts are to be made.

CELLS UNDER THE MICROSCOPE

Today, we have the technology to decipher the underlying principles that govern the structure and activity of the cell. But cell biology started without these tools. The earliest cell biologists began by simply looking at tissues and cells, and later breaking them open or slicing them up, attempting to view their contents. What they saw was to them profoundly baffling—a collection of tiny and scarcely visible objects whose relationship to the properties of living matter seemed an impenetrable mystery. Nevertheless, this type of visual investigation was the first step toward understanding cells, and it remains essential in the study of cell biology.


Cells were not made visible until the seventeenth century, when the **microscope** was invented. For hundreds of years afterward, all that was known about cells was discovered using this instrument. *Light microscopes* use visible light to illuminate specimens, and they allowed biologists to see for the first time the intricate structure that underpins all living things.

Although these instruments now incorporate many sophisticated improvements, the properties of light itself set a limit to the fineness of detail they reveal. *Electron microscopes*, invented in the 1930s, go beyond this limit by using beams of electrons instead of beams of light as the source of illumination, greatly extending our ability to see the fine details of cells and even making some of the larger molecules visible individually. These and other forms of microscopy remain vital tools in the modern cell biology laboratory, where they continue to reveal new and sometimes surprising details about the way cells are built and how they operate.

The Invention of the Light Microscope Led to the Discovery of Cells

The development of the light microscope depended on advances in the production of glass lenses. By the seventeenth century, lenses were powerful enough to make out details invisible to the naked eye. Using an instrument equipped with such a lens, Robert Hooke examined a piece of cork and in 1665 reported to the Royal Society of London that the cork was composed of a mass of minute chambers. He called these chambers "cells," based on their resemblance to the simple rooms occupied by monks in a monastery. The name stuck, even though the structures Hooke described were actually the cell walls that remained after the living plant cells inside them had died. Later, Hooke and his Dutch contemporary Antoni van Leeuwenhoek were able to observe living cells, seeing for the first time a world teeming with motile microscopic organisms.

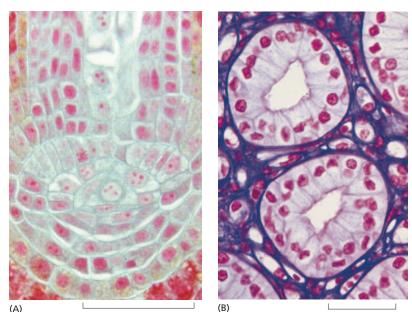
For almost 200 years, such instruments—the first light microscopes remained exotic devices, available only to a few wealthy individuals. It was not until the nineteenth century that microscopes began to be widely used to look at cells. The emergence of cell biology as a distinct science was a gradual process to which many individuals contributed, but its official birth is generally said to have been signaled by two publications: one by the botanist Matthias Schleiden in 1838 and the other by the zoologist Theodor Schwann in 1839. In these papers, Schleiden and Schwann documented the results of a systematic investigation of plant and animal tissues with the light microscope, showing that cells were the universal building blocks of all living tissues. Their work, and that of other nineteenth-century microscopists, slowly led to the realization that all living cells are formed by the growth and division of existing cells—a principle sometimes referred to as the *cell theory* (Figure 1–4). The implication that

50 μm

Figure 1–4 New cells form by growth and division of existing cells. (A) In 1880, Eduard Strasburger drew a living plant cell (a hair cell from a *Tradescantia* flower), which he observed dividing into two daughter cells over a period of 2.5 hours. (B) A comparable living plant cell photographed recently through a modern light microscope. (B, courtesy of Peter Hepler.)

living organisms do not arise spontaneously but can be generated only from existing organisms was hotly contested, but it was finally confirmed in the 1860s by an elegant set of experiments performed by Louis Pasteur.

The principle that cells are generated only from preexisting cells and inherit their characteristics from them underlies all of biology and gives the subject a unique flavor: in biology, questions about the present are inescapably linked to questions about the past. To understand why present-day cells and organisms behave as they do, we need to understand their history, all the way back to the misty origins of the first cells on Earth. Charles Darwin provided the key insight that makes this history comprehensible. His theory of evolution, published in 1859, explains how random variation and natural selection gave rise to diversity among organisms that share a common ancestry. When combined with the cell theory, the theory of evolution leads us to view all life, from its beginnings to the present day, as one vast family tree of individual cells. Although this book is primarily about how cells work today, we will encounter the theme of evolution again and again.


Light Microscopes Allow Examination of Cells and Some of Their Components

If you cut a very thin slice from a suitable plant or animal tissue and view it using a light microscope, you will see that the tissue is divided into thousands of small cells. These may be either closely packed or separated from one another by an *extracellular matrix*, a dense material often made of protein fibers embedded in a polysaccharide gel (Figure 1–5). Each cell is typically about 5–20 μ m in diameter. If you have taken care of your specimen so that its cells remain alive, you will be able to see particles moving around inside individual cells. And if you watch patiently, you may even see a cell slowly change shape and divide into two (see Figure 1–4 and a speeded-up video of cell division in a frog embryo in Movie 1.1).

To see the internal structure of a cell is difficult, not only because the parts are small, but also because they are transparent and mostly colorless. One way around the problem is to stain cells with dyes that color particular components differently (see Figure 1–5). Alternatively, one can exploit the fact that cell components differ slightly from one another in

QUESTION 1–3

You have embarked on an ambitious research project: to create life in a test tube. You boil up a rich mixture of yeast extract and amino acids in a flask along with a sprinkling of the inorganic salts known to be essential for life. You seal the flask and allow it to cool. After several months, the liquid is as clear as ever, and there are no signs of life. A friend suggests that excluding the air was a mistake, since most life as we know it requires oxygen. You repeat the experiment, but this time you leave the flask open to the atmosphere. To your great delight, the liquid becomes cloudy after a few days and under the microscope you see beautiful small cells that are clearly growing and dividing. Does this experiment prove that you managed to generate a novel life-form? How might you redesign your experiment to allow air into the flask, yet eliminate the possibility that contamination is the explanation for the results? (For a ready-made answer, look up the classic experiments of Louis Pasteur.)

50 µm

50 um

Figure 1–5 Cells form tissues in plants and animals. (A) Cells in the root tip of a fern. The nuclei are stained *red*, and each cell is surrounded by a thin cell wall (*light blue*). (B) Cells in the urine-collecting ducts of the kidney. Each duct appears in this cross section as a ring of closely packed cells (with nuclei stained *red*). The ring is surrounded by extracellular matrix, stained *purple*. (A, courtesy of James Mauseth; B, from P.R. Wheater et al., Functional Histology, 2nd ed. Edinburgh: Churchill Livingstone, 1987. With permission from Elsevier.)

cytoplasm plasma membrane nucleus

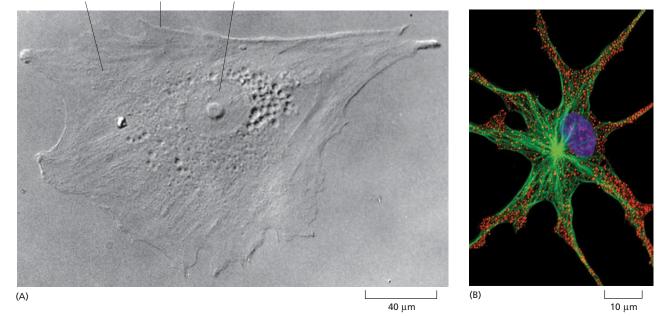
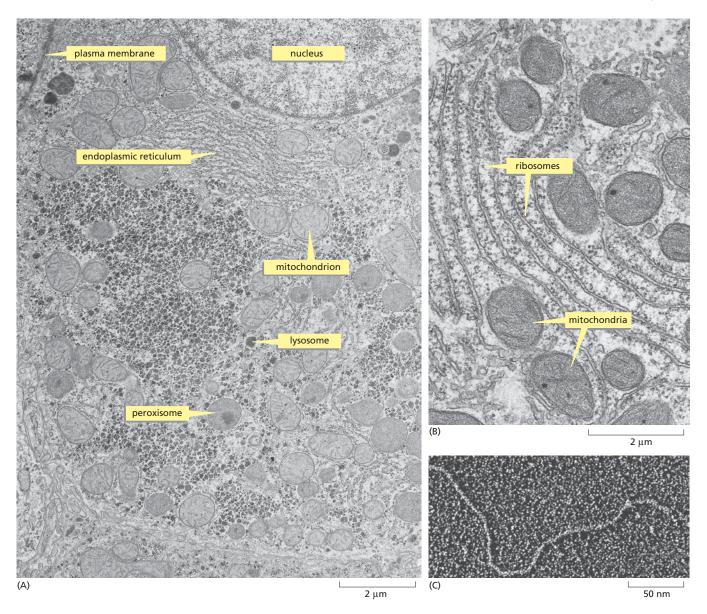


Figure 1-6 Some of the internal structures of a living cell can be seen with a light microscope. (A) A cell taken from human skin and grown in culture was photographed through a light microscope using interference-contrast optics (see Panel 1–1, pp. 10–11). The nucleus is especially prominent. (B) A pigment cell from a frog, stained with fluorescent dyes and viewed with a confocal fluorescence microscope (see Panel 1–1). The nucleus is shown in purple, the pigment granules in red, and the microtubules—a class of filaments built from protein molecules in the cytoplasm-in green. (A, courtesy of Casey Cunningham; B, courtesy of Stephen Rogers and the Imaging Technology Group of the Beckman Institute, University of Illinois, Urbana.)


refractive index, just as glass differs in refractive index from water, causing light rays to be deflected as they pass from the one medium into the other. The small differences in refractive index can be made visible by specialized optical techniques, and the resulting images can be enhanced further by electronic processing.

The cell thus revealed has a distinct anatomy (Figure 1–6A). It has a sharply defined boundary, indicating the presence of an enclosing membrane. A large, round structure, the *nucleus*, is prominent in the middle of the cell. Around the nucleus and filling the cell's interior is the **cytoplasm**, a transparent substance crammed with what seems at first to be a jumble of miscellaneous objects. With a good light microscope, one can begin to distinguish and classify some of the specific components in the cytoplasm, but structures smaller than about 0.2 μ m—about half the wavelength of visible light—cannot normally be resolved; points closer than this are not distinguishable and appear as a single blur.

In recent years, however, new types of **fluorescence microscopes** have been developed that use sophisticated methods of illumination and electronic image processing to see fluorescently labeled cell components in much finer detail (**Figure 1–6B**). The most recent super-resolution fluorescence microscopes, for example, can push the limits of resolution down even further, to about 20 nanometers (nm). That is the size of a single **ribosome**, a large macromolecular complex composed of 80–90 individual proteins and RNA molecules.

The Fine Structure of a Cell Is Revealed by Electron Microscopy

For the highest magnification and best resolution, one must turn to an **electron microscope**, which can reveal details down to a few nanometers. Cell samples for the electron microscope require painstaking preparation. Even for light microscopy, a tissue often has to be *fixed* (that is, preserved by pickling in a reactive chemical solution), supported by *embedding* in a solid wax or resin, cut or *sectioned* into thin slices, and *stained* before it is viewed. For electron microscopy, similar procedures are required, but the sections have to be much thinner and there is no possibility of looking at living, wet cells.

When thin sections are cut, stained, and placed in the electron microscope, much of the jumble of cell components becomes sharply resolved into distinct **organelles**—separate, recognizable substructures with specialized functions that are often only hazily defined with a light microscope. A delicate membrane, only about 5 nm thick, is visible enclosing the cell, and similar membranes form the boundary of many of the organelles inside (**Figure 1–7A**, **B**). The membrane that separates the interior of the cell from its external environment is called the **plasma membrane**, while the membranes surrounding organelles are called *internal membranes*. All of these membranes are only two molecules thick (as discussed in Chapter 11). With an electron microscope, even individual large molecules can be seen (**Figure 1–7C**).

The type of electron microscope used to look at thin sections of tissue is known as a *transmission electron microscope*. This is, in principle, similar to a light microscope, except that it transmits a beam of electrons rather than a beam of light through the sample. Another type of electron microscope—the *scanning electron microscope*—scatters electrons off the surface of the sample and so is used to look at the surface detail of cells and other structures. A survey of the principal types of microscopy used to examine cells is given in **Panel 1–1** (pp. 10–11).

Figure 1–7 The fine structure of a cell can be seen in a transmission electron microscope. (A) Thin section of a liver cell showing the enormous amount of detail that is visible. Some of the components to be discussed later in the chapter are labeled; they are identifiable by their size and shape. (B) A small region of the cytoplasm at higher magnification. The smallest structures that are clearly visible are the ribosomes, each of which is made of 80-90 or so individual large molecules. (C) Portion of a long, threadlike DNA molecule isolated from a cell and viewed by electron microscopy. (A and B, courtesy of Daniel S. Friend; C, courtesy of Mei Lie Wong.)